Deep Learning-aided Brain Tumor Detection: An Initial ‎Experience based Cloud Framework ‎

Safia Abbas, Abeer M Mahmoud


Lately, the uncertainty of diagnosing diseases increased and spread due to the huge intertwined and ambiguity of symptoms, that leads to overwhelming and hindering the reliability of the diagnosis ‎process. Since tumor detection from ‎MRI scans depends mainly on the specialist experience, ‎misdetection will result an inaccurate curing that might cause ‎critical harm consequent results. In this paper, detection service for brain tumors is introduced as ‎an aiding function for both patients and specialist. The ‎paper focuses on automatic MRI brain tumor detection under a cloud based framework for multi-medical diagnosed services. The proposed CNN-aided deep architecture contains two phases: the features extraction phase followed by a detection phase. The contour ‎detection and binary segmentation were applied to extract the region ‎of interest and reduce the unnecessary information before injecting the data into the model for training. The brain tumor ‎data was obtained from Kaggle datasets, it contains 2062 cases, ‎‎1083 tumorous and 979 non-tumorous after preprocessing and ‎augmentation phases. The training and validation phases have been ‎done using different images’ sizes varied between (16, 16) to ‎‎ (128,128). The experimental results show 97.3% for detection ‎accuracy, 96.9% for Sensitivity, and 96.1% specificity. Moreover, ‎using small filters with such type of images ensures better and faster ‎performance with more deep learning.‎


Deep learning, IoT, CNN , e-health, cognitive medical service ‎

Full Text: PDF


  • There are currently no refbacks.


Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272

Creative Commons Licence

This work is licensed under a Creative Commons Attribution 4.0 International License.

web analytics
View IJEEI Stats