Simplified Kinetic Model of Heart Pressure for Human Dynamical Blood Flow

Saktioto Saktioto, Defrianto Defrianto, Andika Thoibah, Yan Soerbakti, Romi Fadli Syahputra, Syamsudhuha Syamsudhuha, Dedi Irawan, Haryana Hairi, Okfalisa Okfalisa, Rina Amelia

Abstract


The blood flow that carries various particles results in disturbed physical flow in the heart organ caused by speed, density, and pressure. This phenomenon is complicated resulting in a wide variety of medical problems. This research provides a mathematical technique and numerical experiment for a straightforward solution to cardiac blood flow to arteries. Finite element analysis (FEA) is used to study and construct mathematical models for human blood flow through arterial branches. Furthermore, FEA is used to simulate the steady two-dimensional flow of viscous fluids across various geometries. The results showed that the blood flow in the carotid artery branching is simulated after the velocity profiles obtained are plotted against the experimental design. The computational method's validity is evaluated by comparing the numerical experiment with the analytical results of various functions.

Keywords


Blood flow; Heart; Navier-Stokes; Finite element method

References


G. Bao, Y. Bazilevs, J. H. Chung, P. Decuzzi, H. D. Espinosa, M. Ferrari, H. Gao, S. S. Hossain, T. J. Hughes, R. D. Kamm, W. K. Liu, and B. Schrefler, “USNCTAM perspectives on mechanics in medicine,” J. R. Soc., Interface, vol. 11, no. 97, May 2014, 20140301, doi: 10.1098/rsif.2014.0301.

C. A. Taylor and C. A. Figueroa, “Patient-specific modeling of cardiovascular mechanics,” Annu. Rev. Biomed. Eng., vol. 11, Apr. 2009, pp. 109–134, doi: 10.1146/annurev.bioeng.10.061807.160521.

Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner, “Learning data-driven discretizations for partial differential equations,” Proc. Natl. Acad. Sci., vol. 116, no. 31, Jul. 2019, pp. 15344–15349, doi: 10.1073/pnas.1814058116.

T. Saktioto, D.Defrianto, N. Hikma, Y.Soerbakti, S.Syamsudhuha, D. Irawan, O. Okfalisa, B. Widiyatmoko, and D.Hanto, “Airflow vibration of diaphragmatic breathing: model and demonstration using optical biosensor,” TELKOMNIKA, vol. 21, no. 3, Jun. 2022, pp. 667–674, doi: 10.12928/telkomnika.v21i3.23613.

H. Z. Yuan, X. D. Niu, S. Shu, M. Li, and H. Yamaguchi, “A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating a flexible filament in an incompressible flow,” Comput. Math. Appl., vol. 67, no. 5, Mar. 2014, pp. 1039–1056, doi: 10.1016/j.camwa.2014.01.006.

Defrianto, T. Saktioto, N. Hikma, Y.Soerbakti, D. Irawan, Okfalisa, B.Widiyatmoko, and D.Hanto, “External perspective of lung airflow model through diaphragm breathing sensor using fiber optic elastic belt,” Indian J. Pure Appl. Phys., vol. 60, no. 7, Jul. 2022, pp. 561–566, doi: 10.56042/ijpap.v60i7.62342.

T. Saktioto, F. D. Fadilla, Y.Soerbakti, D. Irawan, and Okfalisa,“Application of fiber Bragg grating sensor system for simulation detection of the heart rate,” J. Phys. Conf. Ser., vol. 2049, no. 1, Oct. 2021, pp. 1–8, doi: 10.1088/1742-6596/2049/1/012002.

A. Arzani, A. M. Gambaruto, G. Chen, and S. C. Shadden, “Lagrangian wall shear stress structures and near-wall transport in high-Schmidt-number aneurysmal flows,” J. Fluid Mech., vol. 790, Mar. 2016, pp. 158–172, doi: 10.1017/jfm.2016.6.

M. Mahmoudi, A. Farghadan, D. R. McConnell, A. J. Barker, J. J. Wentzel, M. J. Budoff, and A. Arzani, “The story of wall shear stress in coronary artery atherosclerosis: biochemical transport and mechanotransduction,” J. Biomech. Eng., vol. 143, no. 4, Apr. 2021, 041002, doi: 10.1115/1.4049026.

S. Mitatha, N. Moongfangklang, M. A. Jalil, N.Suwanpayak, T.Saktioto, J. Ali, and P. P. Yupapin, “Proposal for Alzheimer’s diagnosis using molecular buffer and bus network,” Int. J. Nanomed., vol. 6, Jun. 2011, pp. 1209–1216, doi: 10.2147/IJN.S22165.

H. Samady, P. Eshtehardi, M. C. McDaniel, J. Suo, S. S. Dhawan, C. Maynard, L. H. Timmins, A. A. Quyyumi, and D. P. Giddens, “Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease,” Circulation, vol. 124, no. 7, Aug. 2011, pp. 779–788, doi: 10.1161/circulationaha.111.021824.

F. J. Detmer, D. Lückehe, F. Mut, M. Slawski, S. Hirsch, P. Bijlenga, G. von Voigt, and J. R. Cebral, “Comparison of statistical learning approaches for cerebral aneurysm rupture assessment,” Int. J. Comput. Assisted Radiol. Surg., vol. 15, no. 1, Jan. 2020, pp. 141–150, doi: 10.1007/s11548-019-02065-2.

Q. Lin, T. Li, P. M. Shakeel, and R. D. J. Samuel, “Advanced artificial intelligence in heart rate and blood pressure monitoring for stress management,” J. Ambient Intell. Humanized Comput., vol. 12, no. 3, Mar. 2021, pp. 3329–3340, doi:10.1007/s12652-020-02650-3.

B. Guerciotti and C. Vergara, “Computational comparison between Newtonian and non-Newtonian blood rheologies in stenotic vessels,” Biomedical Technology, vol. 84, Berlin: Springer, 2018, pp. 169–183.

J. Hron and S. Turek, “A monolithic FEM/multigrid solver for an ALE formulation of fluid-structure interaction with applications in biomechanics,” Fluid-Structure Interaction, Berlin: Springer, 2006, pp. 146–170.

E. Walhorn, A. Kölke, B. Hübner, and D. Dinkler, “Fluid–structure coupling within a monolithic model involving free surface flows,” Comput. Struct., vol. 83, no. 25-26, Sep. 2005, pp. 2100–2111, doi: 10.1016/j.compstruc.2005.03.010.

K. J. Bathe, H. Zhang, and S. Ji, “Finite element analysis of fluid flows fully coupled with structural interactions,” Comput. Struct., vol. 72, no. 1-3, Jul.-Aug. 1999, pp. 1–16, doi: 10.1016/S0045-7949(99)00042-5.

C. Farhat and M. Lesoinne, “Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems,” Comput. Methods Appl. Mech. Eng., vol. 182, no. 3-4, Feb. 2000, pp. 499–515, doi: 10.1016/S0045-7825(99)00206-6.

S. Piperno and C. Farhat, “Partitioned procedures for the transient solution of coupled aeroelastic problems–Part II: energy transfer analysis and three-dimensional applications,” Comput. Methods Appl. Mech. Eng., vol. 190, no. 24-25, Mar. 2001, pp. 3147–3170, doi: 10.1016/S0045-7825(00)00386-8.

Saktioto, Y. Zairmi, V.Veriyanti, W. Candra, R. F.Syahputra, Y.Soerbakti, V. Asyana, D. Irawan, Okfalisa, H. Hairi, N. A. Hussein, Syamsudhuha, and S. Anita,“Birefringence and polarization mode dispersion phenomena of commercial optical fiber in telecommunication networks,” J. Phys. Conf. Ser., vol. 1655, no. 1, Oct. 2020, pp. 1–8, doi: 10.1088/1742-6596/1655/1/012160.

S. Rugonyi and K. J. Bathe, “On finite element analysis of fluid flows fully coupled with structural interactions,” Comput. Model. Eng. Sci., vol. 2, no. 2, 2001, pp. 195–212, doi: 10.1.1.163.1964&rep.

W. A. Wall, S. Genkinger, and E. Ramm, “A strong coupling partitioned approach for fluid–structure interaction with free surfaces,” Comput. Fluids, vol. 36, no. 1, Jan. 2007, pp. 169–183, doi: 10.1016/j.compfluid.2005.08.007.

U. Küttler, M. Gee, C. Förster, A. Comerford, and W. A. Wall, “Coupling strategies for biomedical fluid–structure interaction problems,” Int. J. Numer. Methods Biomed. Eng., vol. 26, no. 3‐4, 2010, pp. 305–321, doi: 10.1002/cnm.1281.

R. Palumbo, C. Gaetano, A. Antonini, G. Pompilio, E. Bracco, L. Rönnstrand, C. H. Heldin, and M. C. Capogrossi, “Different effects of high and low shear stress on platelet-derived growth factor isoform release by endothelial cells: consequences for smooth muscle cell migration,” Arterioscler., Thromb., Vasc. Biol., vol. 22, no. 3, 2002, pp. 405–411, doi: 10.1161/hq0302.104528.

T. Saktioto, K. Ramadhan, Y.Soerbakti, R. F.Syahputra, D. Irawan, and O.Okfalisa, “Apodization sensor performance for TOPAS fiber Bragg grating,”TELKOMNIKA, vol. 19, no. 6,Dec. 2021, pp. 1982–1991, doi: 10.12928/telkomnika.v19i6.21669.

Saktioto, J. Ali, M.Fadhali, M., R. A. Rahman, and J. Zainal, “Modeling of coupling coefficient as a function of coupling ratio,” Ninth International Symposium on Laser Metrology SPIE, vol. 7155, Oct. 2008, pp. 558–567, doi: 10.1117/12.814562.

P. J. Blanco, C. A. Bulant, L. O. Müller, G. M. Talou, C. G. Bezerra, P. A. Lemos, and R. A. Feijóo, “Comparison of 1D and 3D models for the estimation of fractional flow reserve,” Sci. Rep., vol. 8, no. 1, Nov. 2008, pp. 1–12, doi: 10.1038/s41598-018-35344-0.

K. Wu, D. Yang, and N. Wright, “A coupled SPH-DEM model for fluid-structure interaction problems with free-surface flow and structural failure,” Computers and Structures, vol. 177, Dec. 2016, pp. 141–161, doi: 10.1016/j.compstruc.2016.08.012.

S. Čanić, M. Galić, and B. Muha, “Analysis of a 3D nonlinear, moving boundary problem describing fluid-mesh-shell interaction,” Trans. Am. Math. Soc., vol. 373, no. 9, Jul. 2020, pp. 6621–6681, doi: 10.1090/tran/8125.

T. Saktioto, K. Ramadhan, Y.Soerbakti, D. Irawan, and Okfalisa, “Integration of chirping and apodization of Topas materials for improving the performance of fiber Bragg grating sensors,” J. Phys. Conf. Ser., vol. 2049, no. 1, Oct. 2021, pp. 1–11, doi: 10.1088/1742-6596/2049/1/012001.

P. P. Yupapin, T.Saktioto, and J. Ali, “Photon trapping model within a fiber Bragg grating for dynamic optical tweezers use,” Microw. Opt. Technol. Lett., vol. 52, no. 4, Feb. 2010, pp. 959–961, doi: 10.1002/mop.25043.

T. Bodnár, A. Fasano, and A. Sequeira, “Mathematical models for blood coagulation,” Fluid-structure Interaction and Biomedical Applications, Basel: Birkhäuser, 2014, pp. 483–569.

M. Bukač, I. Yotov, and P. Zunino, “An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure,” Numer. Methods Partial Differ. Equations, vol. 31, no. 4, 2015, pp. 1054–1100, doi: 10.1002/num.21936.

S. Ogoh, K. Sato, S. de Abreu, P. Denise, and H. Normand, “Effect of jump exercise training on long‐term head‐down bed rest‐induced cerebral blood flow responses in arteries and veins,” Experimental Physiology, vol. 106, no. 7, Jul. 2021, pp. 1549–1558, doi: 10.1113/EP089102.

J. C. Duque, M. Tabbara, L. Martinez, A. Paez, G. Selman, L. H. Salman, O. C. Velazquez, and R. I. Vazquez-Padron, “Similar degree of intimal hyperplasia in surgically detected stenotic and nonstenotic arteriovenous fistula segments: a preliminary report,”Surg., vol. 163, no. 4, Apr. 2018, pp. 866–869, doi: 10.1016/j.surg.2017.10.038.

H. K. Versteeg and W. Malalasekera, “Computational fluid dynamics,” The Finite Volume Method, USA: Prentice Hall, 1995, pp. 1–26.

D. C. Giancoli, “Fisika edisi kelima jilid 1,” Jakarta: Erlangga, 2001.

A. C. Guyton and J. E. Hall, “Capillary fluid exchange, interstitial fluid dynamics, and lymph flow,” Human Physiology And Mechanisms of Disease, Philadelphia: WB Saunders, 1997, pp. 130–142.

J. R. Cameron, J. G. Skofronick, and R. M. Grant, “Fisika Kedokteran: Fisika Tubuh Manusia,” Jakarta: CV Agung Seto, 2006.

G. Franco, “Applications of Poiseuille’s law to vascular accesses,” Controversies & Updates in Vascular Surgery, 2009, pp. 30–31.

N. R. Matthan, F. K. Welty, P. H. R. Barrett, C. Harausz, G. G. Dolnikowski, J. S. Parks, R. H. Eckel, E. J. Schaefer, and A. H. Lichtenstein, “Dietary hydrogenated fat increases high-density lipoprotein apoA-I catabolism and decreases low-density lipoprotein apoB-100 catabolism in hypercholesterolemic women,” Arterioscler., Thromb., Vasc. Biol., vol. 24, no. 6, 2004, pp. 1092–1097.

J. Brandenburg, “Analysis of numerical differential equations,” USA: Research World, 2012.

D. L. Logan, “A First Course in the Finite Element Method,” USA: Cengage Learning, 2016.

Rao, S. S. “The finite element method in engineering,” UK: Butterworth-heinemann, 2017.

C. Hayani, T. Tulus, and S. Sawaluddin,“Implementasi Metode Elemen Hingga Untuk Persoalan Aliran Air Pada Jaringan Pipa,” Talenta Conference Series: Science and Technology, vol. 1, no. 1, Oct. 2018, pp. 059-068.


Full Text: PDF

Refbacks

  • There are currently no refbacks.


 

Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272

Creative Commons Licence

This work is licensed under a Creative Commons Attribution 4.0 International License.

web analytics
View IJEEI Stats