Blur Classification Using Segmentation Based Fractal Texture Analysis

Shamik Tiwari


The objective of vision based gesture recognition is to design a system, which can understand the human actions and convey the acquired information with the help of captured images. An image restoration approach is extremely required whenever image gets blur during acquisition process since blurred images can severely degrade the performance of such systems. Image restoration recovers a true image from a degraded version. It is referred as blind restoration if blur information is unidentified. Blur identification is essential before application of any blind restoration algorithm. This paper presents a blur identification approach which categories a hand gesture image into one of the sharp, motion, defocus and combined blurred categories. Segmentation based fractal texture analysis extraction algorithm is utilized for featuring the neural network based classification system. The simulation results demonstrate the preciseness of proposed method.


blur classification, Hand Gesture Recognition, Neural Network

Full Text: PDF


  • There are currently no refbacks.


Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272

Creative Commons Licence

This work is licensed under a Creative Commons Attribution 4.0 International License.

web analytics
View IJEEI Stats