Detecting Urban Road Changes using Segmentation and Vector Analysis

M. Sobhana, Gudapati Satya Dinesh Kumar, Yarramreddy Tejaswi, Pavithra Pakkiru

Abstract


The rapid growth of urbanization is driving increased road infrastructure development. Detecting and monitoring changes in urban road areas is challenging for city planners. This research proposes using semantic segmentation and vector analysis on high-resolution images to identify road network changes. The U-Net model performs semantic segmentation, pre-trained on a Massachusetts road dataset, predicting labels for a specific area with temporal data and co-registration to reduce distortions. Predicted labels are converted to shapefiles for vector analysis. Satellite images from Google Earth archives demonstrate the change detection process. The outcome of this predictive phase was the transformation of projected labels into shapefiles, thereby facilitating vector analysis to pinpoint and characterize alterations.

Keywords


Change Detection; Co-registration; Semantic segmentation; U-Net; Vector analysis

Full Text: PDF

Refbacks

  • There are currently no refbacks.


 

Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272

Creative Commons Licence

This work is licensed under a Creative Commons Attribution 4.0 International License.

web analytics
View IJEEI Stats