AIoTST-CR : AIoT Based Soil Testing and Crop Recommendation to Improve Yield
Abstract
Keywords
References
Fariha Shahrin, Labiba Zahin, Ramisa Rahman, Jahir Hossain, Abdulla Hil Kafi and A.K.M Abdul Malek Azad, " Agricultural Analysis and Crop Yield Prediction of Habiganj using Multispectral Bands of Satellite Imagery with Machine Learning," IEEE 2020 Proceedings of 11th International Conference on Electrical and Computer Engineering (ICECE) DOI: 10.1109/ICECE51571.2020.9393066
Abhiram MSD, Jyothsnavi Kuppili and N.Alivelu Manga “Smart Farming System using IoT for Efficient Crop
Growth” proceedings of IEEE 2020 International Conference on Electrical, Electronics and Computer Science
Sashant Suhag, Sanskriti jadaun, Ayush Shukla, Nidhi Singh, Prashant Johri and Nidhi Parashar “IoT based Soil
Nutrition and Plant Disease Detection System for Smart Agriculture” 10th IEEE International Conference on
Communication Systems and Network Technologies DOI: 10.1109/CSNT51715.2021.9509719
Siddalinga Nuchhi, Vinaykumar Bagali and Shilpa Annigeri “IOT Based Soil Testing Instrument For Agriculture
Purpose” IEEE explore journal.
Farnaz Babaie Sarijaloo, Michele Porta, Bijan Taslimi and Panos Pardalos “Yield performance estimation of corn
hybrids using machine learning algorithms” Artificial Intelligence in Agriculture 5 (2021) 82–89
A. Subeesh , C.R. Mehta “Automation and digitization of agriculture using artificial intelligence and internet of
things” Artificial Intelligence in Agriculture 5 (2021) 278–291 indexed in ScienceDirect
Liu, D., Mishra, A.K., Yu, Z., 2016b. “Evaluating uncertainties in multi-layer soil moisture estimation with support
vector machines and ensemble Kalman filtering.“ J. Hydrol.538,243–255
https://doi.org/10.1016/j.jhydrol.2016.04.02
Khaki, S., Wang, L., Archontoulis, S.V., 2020. A CNN-RNN framework for crop yield prediction. Front. Plant Sci.
https://doi.org/10.3389/fpls.2019.01750.
Lavanya, G., Rani, C., Ganeshkumar, P., 2019. An automated low cost IoT based Fertilizer Intimation System for
smart agriculture. Sustain. Comput. Inform. Syst. https://doi. org/10.1016/j.suscom.2019.01.002.
Bhuwan Kashyap and Ratnesh Kumar. Sensing Methodologies in Agriculture for Soil Moisture and Nutrient
Monitoring. IEEE Paper DOI 10.1109/ACCESS.2021.3052478. VOLUME 9, 2021
Soil Test parameters and crop recommendation data download from
https://www.kaggle.co/datasets/atharvaingle/crop-recommendation-dataset
A User-friendly AIoT-Based Crop Recommendation system (UACR): concept and architecture. Available from:
https://www.researchgate.net/publication/369938116_A_User-friendly_AIoT- Based_Crop_Recommendation_system_UACR_concept_and_architecture
Akhter, R.; Sofi, S.A. Precision agriculture using IoT data analytics and machine learning. J. King Saud Univ.-
Comput. Inf. Sci. 2021, 34, 5602–5618.
ivakumar, R.; Prabadevi, B.; Velvizhi, G.; Muthuraja, S.; Kathiravan, S.; Biswajita, M.; Madhumathi, A. Internet
of Things and Machine Learning Applications for Smart Precision Agriculture. In IoT Applications Computing;
IntechOpen: London, UK, 2022; p. 135.
Dagar, R.; Som, S.; Khatri, S.K. Smart farming–IoT in agriculture. In Proceedings of the 2018 International
Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 11–12 July 2018.
Priya, R.; Ramesh, D.; Khosla, E. Crop Prediction on the Region Belts of India: A Naïve Bayes MapReduce
Precision Agricultural Model. In Proceedings of the 2018 International Conference on Advances in Computing,
Communications and Informatics (ICACCI), Bangalore, India, 19–22 September 2018; pp. 99–104.
Hu, C.; Zhong, X.; Xu, J. Study on integrated discovery system of sensors for agriculture observation application.
In Proceedings of the 2014 The Third International Conference on Agro-Geoinformatics, Beijing, China, 11–14
August 2014; pp. 1–5.
Pajares, G.; Peruzzi, A.; Gonzalez-De-Santos, P. Sensors in Agriculture and Forestry. Sensors 2013, 13, 12132–
Bhat, S.A.; Huang, N.-F. Big Data and AI Revolution in Precision Agriculture: Survey and Challenges. IEEE
Access 2021, 9, 110209–110222.
Ali, S.M.; Das, B.; Kumar, D. Machine Learning based Crop Recommendation System for Local Farmers of Pakistan. Rev. Geintec-Gest. Inov. Tecnol. 2021, 11, 5735–5746.
Gosai, D.; Raval, C.; Nayak, R.; Jayswal, H.; Patel, A. Crop Recommendation System using Machine Learning. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 2021, 7, 554–557.
Mulge, M.; Sharnappa, M.; Sultanpure, A.; Sajjan, D.; Kamani, M. Agricultural crop recommendation system using IoT and ML. Int. J. Anal. Exp. Modal Anal. 2020, 12, 1112–1117.
Viviliya, B.; Vaidhehi, V. The Design of Hybrid Crop Recommendation System using Machine Learning Algorithms. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 2019, 9, 4305–4311.
Hasyiya K. A., Muhammad A. R., Khairul N. S., Wan Salihin Wong Recent Advancements and Challenges of AIoT Application in Smart Agriculture: A Review Special Issue Accelerating Beyond Traditional Farming through Exceptional Approaches of AI and IoT Sensors 2023, 23(7), 3752; https://doi.org/10.3390/s23073752
Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. Enhancing smart farming through the applications of Agriculture 4.0 technolgies. Int. J. Intell. Netw. 2022, 3, 150–164.
Pant, J.; Pant, R.P.; Singh, M.K.; Singh, D.P.; Pant, H. Analysis of agricultural crop yield prediction using statistical techniques of machine learning. Mater. Today Proc. 2021, 46, 10922–10926.
O’Shaughnessy, S.A.; Kim, M.; Lee, S.G.; Kim, Y.; Kim, H.; Shekailo, J. Towards smart farming solutions in the U.S. and South Korea: A comparison of the current status. Geogr. Sustain. 2021, 2, 312–327.
Khan, J.I.; Khan, J.; Ali, F.; Ullah, F.; Bacha, J.; Lee, S. Artificial Intelligence and Internet of Things (AI-IoT) Technologies in Response to COVID-19 Pandemic: A Systematic Review. IEEE Access 2022, 10, 62613–62660.
Zhang, H.; He, L.; Di Gioia, F.; Choi, D.; Elia, A.; Heinemann, P. LoRa WAN based internet of things (IoT) system for precision irrigation in plasticulture fresh-market tomato. Smart Agric. Technol. 2022, 2, 100053.
S. Katiyar and A. Farhana, “Smart agriculture: The future of agriculture using ai and iot,” Journal of Computational Science, vol. 17, no. 10, pp.984–999, 2021.
M. Pathan, N. Patel, H. Yagnik, and M. Shah, “Artificial cognition for applications in smart agriculture: A comprehensive review,” Artificial Intelligence in Agriculture, vol. 4, pp. 81–95, 2020.
S. K. S. Durai and M. D. Shamili, “Smart farming using machine learning and deep learning techniques,” Decision Analytics Journal,vol. 3, p. 100041, 2022.
Y. Liu, X. Ma, L. Shu, G. P. Hancke, and A. M. Abu-Mahfouz, “From industry 4.0 to agriculture 4.0: Current status, enabling technologies, and research challenges,” IEEE Transactions on Industrial Informatics, vol. 17, no. 6, pp. 4322–4334, 2020.
O. Friha, M. A. Ferrag, L. Shu, L. Maglaras, and X. Wang, “Internet of things for the future of smart agriculture: a comprehensive survey of emerging technologies,” IEEE/CAA Journal of Automatica Sinica, vol. 8,no. 4, pp. 718–752, 2021.
A. Mitra, S. L. Vangipuram, A. K. Bapatla, V. K. Bathalapalli, S. P.Mohanty, E. Kougianos, and C. Ray, “Everything you wanted to know about smart agriculture,” arXiv preprint arXiv:2201.04754, 2022
Suchithra, M.; Pai, M.L. Improving the prediction accuracy of soil nutrient classification by optimizing extreme learning machine parameters. Inf. Process. Agric. 2020, 7, 72–82.
Dash, R.; Dash, D.K.; Biswal, G. Classification of crop based on macronutrients and weather data using machine learning techniques. Results Eng. 2021, 9, 100203.
Balakrishnan, N.; Muthukumarasamy, G. Crop production-ensemble machine learning model for prediction. Int. J. Comput. Sci. Softw. Eng. 2016, 5, 148.
Pantazi, X.; Moshou, D.; Alexandridis, T.; Whetton, R.; Mouazen, A. Wheat yield prediction using machine learning and advanced sensing techniques. Comput. Electron. Agric. 2016, 121, 57–65.
Refbacks
- There are currently no refbacks.
Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272
This work is licensed under a Creative Commons Attribution 4.0 International License.