Clustering the Addiction Levels of Drug Users Using Fuzzy C-Mean
Abstract
Keywords
References
K. D. Ersche et al., “Brain networks underlying vulnerability and resilience to drug addiction,” Proc. Natl. Acad. Sci. U. S. A., vol. 117, no. 26, pp. 15253–15261, 2020, doi: 10.1073/pnas.2002509117.
Z. Zhang, A. K. Mitra, J. A. Schroeder, and L. Zhang, “The Prevalence of and Trend in Drug Use among Adolescents in Mississippi and the United States: Youth Risk Behavior Surveillance System (YRBSS) 2001–2021,” Int. J. Environ. Res. Public Health, vol. 21, no. 7, 2024, doi: 10.3390/ijerph21070919.
M. B. Saberi Zafarghandi et al., “Indicators of Drug-Related Community Impacts of Open Drug Scenes: A Scoping Review,” Eur. Addict. Res., vol. 28, no. 2, pp. 87–102, 2022, doi: 10.1159/000519886.
S. Rehman, E. Mustafa, A. A. Faiz, M. Kanwal, F. Yasmin, and A. Fatima, “Impacts of Drug Addiction on Psychological and Emotional Health and Role of Medicinal Plants in Treatment of Drug Addiction,” J. Innov. Sci., vol. 8, no. 2, 2022, doi: 10.17582/journal.jis/2022/8.2.311.325.
L. V. Panlilio et al., “Beyond abstinence and relapse: cluster analysis of drug-use patterns during treatment as an outcome measure for clinical trials,” Psychopharmacology (Berl)., vol. 237, no. 11, pp. 3369–3381, 2020, doi: 10.1007/s00213-020-05618-5.
Y. Deng, X. Xu, Y. Qiu, J. Xia, W. Zhang, and S. Liu, “A multimodal deep learning framework for predicting drug-drug interaction events,” Bioinformatics, vol. 36, no. 15, pp. 4316–4322, 2020, doi: 10.1093/bioinformatics/btaa501.
W. W. Xu et al., “Unmasking the Twitter Discourses on Masks During the COVID-19 Pandemic: User Cluster-Based BERT Topic Modeling Approach,” JMIR Infodemiology, vol. 2, no. 2, pp. 1–29, 2022, doi: 10.2196/41198.
S. Park et al., “Improving unsupervised image clustering with robust learning,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., no. 2, pp. 12273–12282, 2021, doi: 10.1109/CVPR46437.2021.01210.
O. N. Kenger, Z. D. Kenger, E. Ozceylan, and B. Mrugalska, “Clustering of Cities Based on Their Smart Performances: A Comparative Approach of Fuzzy C-Means, K-Means, and K-Medoids,” IEEE Access, vol. 11, no. October, pp. 134446–134459, 2023, doi: 10.1109/ACCESS.2023.3333753.
B. Lund and J. Ma, “A review of cluster analysis techniques and their uses in library and information science research: k-means and k-medoids clustering,” Perform. Meas. Metrics, vol. 22, no. 3, pp. 161–173, 2021, doi: 10.1108/PMM-05-2021-0026.
O. Al-Janabee and B. Al-Sarray, “Evaluation Algorithms Based on Fuzzy C-means for the Data Clustering of Cancer Gene Expression,” Iraqi J. Comput. Sci. Math., vol. 3, no. 2, pp. 27–41, 2022, doi: 10.52866/ijcsm.2022.02.01.004.
V. Rayala and S. R. Kalli, “Big data clustering using Improvised Fuzzy C-Means clustering,” Rev. d’Intelligence Artif., vol. 34, no. 6, pp. 701–708, 2021, doi: 10.18280/RIA.340604.
Wani, A. A. (2024). Comprehensive analysis of clustering algorithms: exploring limitations and innovative solutions. PeerJ Computer Science, 10, e2286.
Gatea, A. N., & AL-Asadi, H. A. A. (2024). Soft Clustering Techniques: An In-Depth Analysis of GMM and FCM Algorithms and Comparative Performance. Basrah Researches Sciences, 50(2), 223-238.
Hajihosseinlou, M., Maghsoudi, A., & Ghezelbash, R. (2024). Intelligent mapping of geochemical anomalies: Adaptation of DBSCAN and mean-shift clustering approaches. Journal of Geochemical Exploration, 258, 107393.
Hashemi, S. E., Gholian-Jouybari, F., & Hajiaghaei-Keshteli, M. (2023). A fuzzy C-means algorithm for optimizing data clustering. Expert Systems with Applications, 227, 120377.
X. Shu and Y. Ye, “Knowledge Discovery : Methods from data mining and machine learning ☆,” Soc. Sci. Res., vol. 110, no. April 2022, p. 102817, 2023, doi: 10.1016/j.ssresearch.2022.102817.
I. T. Ayorinde, “Applying Machine Learning Technique for Knowledge Discovery in Network Database,” no. July, 2024, doi: 10.35444/IJANA.2024.16109.
V. Plotnikova, M. Dumas, and F. P. Milani, “Applying the CRISP-DM data mining process in the financial services industry: Elicitation of adaptation requirements,” Data Knowl. Eng., vol. 139, no. March, p. 102013, 2022, doi: 10.1016/j.datak.2022.102013.
L. S. Okfalisa, Elvia Budianita, Rezi Yuliani et al., “Forecasting company financial distress: C4.5 and adaboost adoption,” vol. 49, no. 3, pp. 300–307, 2022, doi: 10.14456/easr.2022.31.
K. Gjini et al., “The use of AGILE 3+ and AGILE 4 for the prediction of advanced fibrosis and cirrhosis in patients with Non-Alcoholic Fatty Liver Disease,” Dig. Liver Dis., vol. 55, pp. S31–S32, 2023, doi: 10.1016/j.dld.2023.01.060.
M. Jansevskis and K. Osis, “Securing the Future: The Role of Knowledge Discovery Frameworks,” Artif. Intell. Secur., pp. 85–101, 2024, doi: 10.1007/978-3-031-57452-8_5.
A. H. Al-Faouri, “Adopting Data Mining as a Knowledge Discovery Tool: The Influential Factors from the Perspectives of Information Systems Managers,” Inf. Sci. Lett., vol. 12, no. 5, pp. 1851–1861, 2023, doi: 10.18576/isl/120529.
R. Zebari, A. Abdulazeez, D. Zeebaree, D. Zebari, and J. Saeed, “A Comprehensive Review of Dimensionality Reduction Techniques for Feature Selection and Feature Extraction,” J. Appl. Sci. Technol. Trends, vol. 1, no. 1, pp. 56–70, 2020, doi: 10.38094/jastt1224.
E. Pekel Özmen and T. Küçükdeniz, “Two-stage clustering and routing problem by using FCM and K-means with genetic algorithm,” Sigma J. Eng. Nat. Sci., vol. 42, no. 4, pp. 1030–1038, 2024, doi: 10.14744/sigma.2023.00096.
S. E. Hashemi, F. Gholian-Jouybari, and M. Hajiaghaei-Keshteli, “A fuzzy C-means algorithm for optimizing data clustering,” Expert Syst. Appl., vol. 227, no. April, p. 120377, 2023, doi: 10.1016/j.eswa.2023.120377.
Aşut, G., Alıcı, Y. H., Ceran, S., Danışman, M., & Şahiner, Ş. Y. (2024). Affective neuroscience personality traits in opioid use disorder patients: the relationship with earlier onset of substance use, the severity of addiction, and motivational factors to quit opiate use. Brain and Behavior, 14(9). https://doi.org/10.1002/brb3.70050
Compton, W. M., Valentino, R. J., & DuPont, R. L. (2020). Polysubstance use in the u.s. opioid crisis. Molecular Psychiatry, 26(1), 41-50. https://doi.org/10.1038/s41380-020-00949-3
Stringfellow, E. J., Lim, T. Y., Humphreys, K., DiGennaro, C., Stafford, C., Beaulieu, É., … & Jalali, M. S. (2022). Reducing opioid use disorder and overdose deaths in the united states: a dynamic modeling analysis. Science Advances, 8(25). https://doi.org/10.1126/sciadv.abm8147.
Udoh, E., Omorere, D. E., Olarewaju, S. O., Osasu, O. S., & Amoo, B. (2021). Psychological distress and burden of care among family caregivers of patients with mental illness in a neuropsychiatric outpatient clinic in nigeria. Plos One, 16(5), e0250309. https://doi.org/10.1371/journal.pone.0250309
Ma, Z., Liu, Y., Wan, C., Jiang, J., Li, X., & Zhang, Y. (2022). Health-related quality of life and influencing factors in drug addicts based on the scale qlicd-da: a cross-sectional study. Health and Quality of Life Outcomes, 20(1). https://doi.org/10.1186/s12955-022-02012-x
Z. Liang, C. Wang, S. Han, K. Ullah Jan Khan, and Y. Liu, “Classification and susceptibility assessment of debris flow based on a semi-quantitative method combination of the fuzzy C-means algorithm, factor analysis and efficacy coefficient,” Nat. Hazards Earth Syst. Sci., vol. 20, no. 5, pp. 1287–1304, 2020, doi: 10.5194/nhess-20-1287-2020.
M. Shutaywi and N. N. Kachouie, “Silhouette analysis for performance evaluation in machine learning with applications to clustering,” Entropy, vol. 23, no. 6, pp. 1–17, 2021, doi: 10.3390/e23060759.
I. F. Ashari, E. Dwi Nugroho, R. Baraku, I. Novri Yanda, and R. Liwardana, “Analysis of Elbow, Silhouette, Davies-Bouldin, Calinski-Harabasz, and Rand-Index Evaluation on K-Means Algorithm for Classifying Flood-Affected Areas in Jakarta,” J. Appl. Informatics Comput., vol. 7, no. 1, pp. 89–97, 2023, doi: 10.30871/jaic.v7i1.4947.
S. P. Lima and M. D. Cruz, “A genetic algorithm using Calinski-Harabasz index for automatic clustering problem,” Rev. Bras. Comput. Apl., vol. 12, no. 3, pp. 97–106, 2020, doi: 10.5335/rbca.v12i3.11117.
W. Chang et al., “Analysis of university students’ behavior based on a fusion K-means clustering algorithm,” Appl. Sci., vol. 10, no. 18, 2020, doi: 10.3390/APP10186566.
S. Gowda, C. S. Nandan, M. A. Jayaram, A. Gupta, and R. S. Jaya, “Unsupervised Clustering of Asphalt Pavement Conditions Using Fuzzy C-Means Algorithm with Principal Component Analysis Aided Dimensionality Reduction,” Lect. Notes Networks Syst., vol. 831, pp. 35–45, 2024, doi: 10.1007/978-981-99-8135-9_4.
Guo, X., Li, J., & Xu, H. (2021). An improved silhouette coefficient method for determining the optimal number of clusters. Expert Systems with Applications, 177, 114921. doi: 10.1016/j.eswa.2021.114921
N. D. Volkow and C. Blanco, “Substance use disorders : a comprehensive update of classification , epidemiology , neurobiology , clinical aspects , treatment and prevention,” no. June, pp. 203–229, 2023, doi: 10.1002/wps.21073.
S. Marinelli, G. Basile, R. Manfredini, and S. Zaami, “Sex- and Gender-Specific Drug Abuse Dynamics: The Need for Tailored Therapeutic Approaches,” J. Pers. Med., 2023, doi: 10.3390/jpm13060965.
Petry, J. (2021). A Critical Look at the Concept of Addiction in DSM-5 and ICD-11. American Journal of Psychiatry and Neuroscience, 9(1), 7-14.
Reichert, R. A., da Silva, E. A., De Micheli, D., Noto, A. R., Skinstad, A. H., & Galduróz, J. C. F. (2025). Substance Use Disorders: History, Theoretical Models and Diagnostic Criteria (ICD-11 e DSM-5-TR). In Neuropsychology and Substance Use Disorders: Assessment and Treatment (pp. 3-49). Cham: Springer Nature Switzerland.
Refbacks
- There are currently no refbacks.
Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272
This work is licensed under a Creative Commons Attribution 4.0 International License.