Enhancing Accuracy for Classification Using the CNN Model and Hyperparameter Optimization Algorithm
Abstract
Keywords
References
I. H. Sarker, “Machine Learning: Algorithms, Real-World Applications and Research Directions”, SN Computer Science, Vol. 2, No. 3, pp. 160, 2021.
H. Fujiyoshi, T. Hirakawa, and T. Yamashita, “Deep learning-based image recognition for autonomous driving”, IATSS Research, Vol. 43, No. 4, pp. 244-252, 2019.
W. J. Wong and S. H. Lai, “Multi-task CNN for restoring corrupted fingerprint images”, Pattern Recognition, Vol. 101, pp. 107203, 2020.
H. H. Luong, T. T. Khanh, M. D. Ngoc, M. H. Kha, K. T. Duy, and T. T. Anh, “Detecting Exams Fraud Using Transfer Learning and Fine-Tuning for ResNet50”, In: Communications in Computer and Information Science, Ho Chi Minh City, Vietnam, Vol. 1688, pp. 747-754, 2022.
M. M. Taye, “Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions”, Computation, Vol. 11, No. 3, pp. 52, 2023.
S. Almabdy and L. Elrefaei, “Deep Convolutional Neural Network-Based Approaches for Face Recognition”, Applied Sciences (Switzerland), Vol. 9, No. 20, pp. 4397, 2019.
D. Beohar and A. Rasool, “Handwritten Digit Recognition of MNIST dataset using Deep Learning state-of-the-art Artificial Neural Network (ANN) and CNN”, In: International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, pp. 542-548, 2021.
R. L. Galvez, A. A. Bandala, E. P. Dadios, R. R. P. Vicerra and J. M. Z. Maningo, “Object Detection Using Convolutional Neural Networks”, In: IEEE Region 10 Annual International Conference, Proceedings TENCON, Jeju, Korea (South), pp. 2023-2027, 2018.
S. Kumaar, R. M. Vishwanath, S. N. Omkar, A. Majeedi and A. Dogra, “Disguised Facial Recognition Using Neural Networks”, In: 2018 IEEE 3rd International Conference on Signal and Image Processing (ICSIP), Shenzhen, China, pp. 28-32, 2018.
S. M. Anwar, M. Majid, A. Qayyum, M. Awais, M. Alnowami, and M. K. Khan, “Medical Image Analysis using Convolutional Neural Networks: A Review”, Journal of Medical Systems, Vol. 42, No. 11, pp. 226, 2018.
R. Lateef and A. Abbas, “Tuning the Hyperparameters of the 1D CNN Model to Improve the Performance of Human Activity Recognition”, Engineering and Technology Journal, Vol. 40, No. 4, pp. 547-554, 2022.
TN Tran, “Grid Search of Convolutional Neural Network model in the case of load forecasting”, Archives Of Electrical Engineering, Vol. 70, No. 1, pp. 25-36, 2021.
K. and N. R. O’Shea, “An Introduction To Convolutional Neural Networks”, International Journal for Research in Applied Science and Engineering Technology, Vol. 10, No. 12, 2015.
R. Zatarain Cabada, H. Rodriguez Rangel, M. L. Barron Estrada, and H. M. Cardenas Lopez, “Hyperparameter optimization in CNN for learning-centered emotion recognition for intelligent tutoring systems,” Soft Computing, Vol. 24, No. 10, pp. 7593-7602, 2020.
L. Yang and A. Shami, “On hyperparameter optimization of machine learning algorithms: Theory and practice,” Neurocomputing, Vol. 415, pp. 295-316, 2020.
A. Morales-Hernández, I. van Nieuwenhuyse, and S. Rojas Gonzalez, “A survey on multi-objective hyperparameter optimization algorithms for machine learning,” Artificial Intelligence Review, Vol. 56, No. 8, pp. 8043-8093, 2023.
N. M. Aszemi and P. D. D. Dominic, “Hyperparameter optimization in convolutional neural network using genetic algorithms,” International Journal of Advanced Computer Science and Applications, Vol. 10, No. 6, pp. 269-278, 2019.
E. C. Garrido-Merchán and D. Hernández-Lobato, “Dealing with categorical and integer-valued variables in Bayesian Optimization with Gaussian processes,” Neurocomputing, Vol. 380, pp. 20-35, 2020.
M. McIntire, D. Ratner, and S. Ermon, “Sparse Gaussian processes for Bayesian optimization,” In: Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI), New Jersey, USA, pp. 517-526, 2016.
W. Zhang, C. Wu, H. Zhong, Y. Li, and L. Wang, “Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization,” Geoscience Frontiers, Vol. 12, No. 1, pp. 469-477, 2021.
J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-parameter optimization,” In: Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011, pp. 2546-2554, 2011.
C. Ferri, J. Hernández-Orallo, and R. Modroiu, “An experimental comparison of performance measures for classification,” Pattern Recognition Letters, Vol. 30, No. 1, pp. 27-38, 2009.
W. Dhifli and A. B. Diallo, “Face Recognition in the Wild,” Procedia Computer Science, Vol. 96, pp. 1571-1580, 2016.
Refbacks
- There are currently no refbacks.
Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN 2089-3272
This work is licensed under a Creative Commons Attribution 4.0 International License.